
Non-Sequential

EPIGRAPH
"This is Perl. When in doubt, use a hash."

--attributed to Leon Brocard

DESCRIPTION
This document provides a different approach to preparing Perl development releases during what
I will call the Interregnum. The Interregnum is the period commencing with the production 
release of perl-5.32.0 and terminating with the production release of perl-7.2.0. It may -- or 
may not -- include releases of perl-5.34.0 and perl-7.0.0. It does not include maintenance 
releases of perl-5.32, which procede as previously, with priority to security releases.

What Is a Non-Sequential Development Release of Perl?

To answer this question we first have to describe the way in which Perl 5's release process, up 
until now, can be characterized as sequential.

Our current, sequential development pattern

The current cycle works like this:

• The pumpking issues a production release of perl-5.NN.0, where NN is even. The release
has a dual form:

1. A tarball is uploaded to CPAN for worldwide distribution.
2. The commit in blead where the tarball has been generated is tagged v5.NN.0.

• The pumpking makes a few metadata-ish commits to blead. Ideally, at this time blead is
frozen. Only the pumpking makes commits to blead and none of those commits may 
have any impact, intended or unintended, on the functionality of perl-5.NN.0 or its test 
suite.

• The pumpking changes 5.NN to 5.NN+1 at important points in the codebase and issues the
first development release in the new development cycle, perl-5.NN+1.0, where NN+1 is 
odd. This release also takes a dual form: an upload to CPAN and a tag in blead.

• blead is now unfrozen. All commit-bit holders are free to commit code to blead that 
either they themselves have written or that others have submitted via patches or pull 
requests. Some commits may be minor -- equivalent to a mechanic tightening the screws 
on the undercarriage of a truck. Others may be major -- equivalent to introducing a new 
transmission design for that truck.

From the point of blead, all commits are of equal importance. All committers are 

1 



presumed to exercise due diligence and courtesy.

The pumpking is not expected to rule on whether a particular commit should go in to 
blead or not. At least one former pumpking has said, "I go where the patches take me." 
So once blead is unfrozen, there is no specific plan for what will go into the next 
production release (or even the next development release) -- with the possible exception 
of scheduled deprecations and fatalizations. Hence, this development is largely 
unplanned.

• On or about the 20th day of the month following perl-5.NN+1.0 a commit-bit holder 
acting in the role of release manager creates the next monthly development release. 
Once again, this release has a dual form: a tarball named perl-5.NN+1.1 and a tag in the 
repository v5.NN+1.1. For at least the first six months of an annual development cycle, 
the release manager exercises no discretion as to what goes into that release. He or she 
simply tars up blead, tags it and ships it.

The cycle repeats on a monthly basis.

• This development is cumulative. Unless particular commits are reverted, all the 
functionality that was released in perl-5.31.1 is still there a month later in perl-
5.31.2, though new functionality may have been added.

• The cumulative nature of this development is reflected in the fact that release numbers 
and tags are sequential in character. Release perl-5.31.2 is understood to 
unambiguously mean "the first monthly release of perl-5.31.1." Same thing for tag 
v5.31.2 with respect to v5.31.1. So we can think of the natural number in the third, 
"patch version" position in the release name or tag as being an index into an array. Array 
indices start at 0 and proceed upwards, though in this case we hope that the patch version 
never goes higher than 11.

• About eight months into the development cycle committers are supposed to begin 
heeding various freeze points and avoid making certain kinds of commits to blead.

• About ten months into the cycle the pumpking must reappear on the scene to start 
preparing release candidate (RC) releases in preparation for the next production release. 
Generally speaking, whatever functionality and code has been accumulating over the past
year appears in perl-5.NN+2.0-RC0. The pumpking is required to play the role of 
"senior release manager," but he or she is not required to play the role of "editor."

• At a certain point, the pumpking issues the next production release.

What would it mean for a development pattern to be non-sequential?

In a non-sequential development pattern, the third, "patch version" position in a release name or 
tag would be treated as a hash key rather than as an array index. This would be so 
notwithstanding the fact that the characters in the third position would still be positive numbers 
rather than arbitrary strings. Each such key would signify a continuous stream of development 

2 



beginning with 5.NN+1.0, taking place in a non-blead branch and ending with the 
implementation of a specific set of features in a release entitled perl-5.NN+1.1 and tag 
<v5.NN+1.1> -- but the final .1 there would not be treated as "first in an ordered list" but simply
as shorthand for "first dev release to have implemented a specific set of new functionality."

In a different, non-blead branch, someone else would start with 5.NN+1.0 and work on a 
different, specific set of features. That would culminate in 5.NN+1.2 and tag v5.NN+1.2. But 
once again, the final .2 would not imply "includes the features that were in .1 plus another 
month's work." It would imply "a different set of features, implemented from the same starting 
point (5.NN+1.0) but ending in a different place. And I do mean ending. Once a dev release was 
cut from that branch, the branch would be closed to further commits.

Each of these would be development releases of Perl, but they would not be thought of as 
cumulative, sequential or unplanned. The lead developers for each track would have to announce
in advance what they were trying to accomplish in that branch. As they near the end of 
development of that functionality, they would have to demonstrate that they had achieved their 
goal and that all the functionality that was in perl-5.NN+1.0 (or, in effect, perl-5.NN.0) was 
still intact.

Development would therefore be non-cumulative, non-sequential, but planned.

A tarball would be released, but not necessarily on a monthly basis. It would be released when 
the branch lead developer had persuaded the pumpking that the code in the branch deserved 
exposure to the wider world. The pumpking would not be required to promise that the new 
functionality would appear in the next production release of Perl.

The Perl community's collective QA infrastructure would have to be modified to accept non-
sequential development releases. But these modifications -- to test-smoke.org (currently not 
operational), CPANtesters, my own CPAN-River-3000 testing would be a SMOP.

At a certain point, the pumpking would have to step forward and make decisions as to which of 
these various development branches would be cherry-picked for the next production release.

Why Should We Consider Non-Sequential Development Right Now?

We are in the Interregnum. Even among those community members who are not opposed to 
Sawyer X's vision for Perl 7, there is wide disagreement as to what functionality should be 
included in development releases (5.33 or 7-something?), production releases (Will there be a 
5.34? 5.36? What will 7.0 signify as distinct from both 5.32 and 7.2?)

I argue that trying to stick rigidly to our established development pattern is neither wise nor 
necessary right now. We need to have a number of different strands of development proceeding 
simultaneously. Then we will need to come back together to sew those strands back together -- a 
proces that must take place under the pumpking's direction.

Concretely:

• Sawyer X should revert any commits to blead that have been made since the release of 
perl-5.32.0 which could have any impact whatsoever on perl's functionality and issue 

3 



a perl-5.33.0 tarball and v5.33.0 tag. That release will serve as the baseline for all 
future development work.

• blead will be frozen until such time as we are ready to resume our current development 
process -- what I have characterized as a cumulative, sequential and unplanned 
process. Only the pumpking will be permitted to make commits to blead.

• People who want to introduce new or modified functionality will announce their plans to 
do so. If they have commit bits, they can create a branch in the Perl repository on github 
and conduct development there. They will solicit pull requests into that branch -- not into 
blead. If they do not have commits, they will be encouraged to fork the main Perl 
repository into their own github accounts, then create new branches starting at the 
v5.33.0 tag. Either way, they are free to organize and supervise the development process
in their own tracks as they see fit. That may mean, for example, having issues filed in a 
location other than https://github.com/Perl/perl5/issues.

• In this approach, for example, Paul "LeoNerd" Evans could start at v5.33.0 and 
implement try/catch functionality. Karl Williamson would also start at v5.33.0 and 
implement the next stage of his regex-improvement project. Nicolas R and I would rebase
our core-p7 branch on v5.33.0 and continue our experimental exploration of "many-
more-features-on-by-default." And one other branch would start at v5.33.0 and be the 
location for commits of the mechanic-tightening-the-screws-on-the-truck nature I 
described earlier.

• As each track comes close to achieving its stated goals, the branch manager would ask for
review from the pumpking. (Since all this development will be taking place out in the 
open on github, the community and the world will have had ample opportunity to 
kibbitz.) If the pumpking gives a thumbs-up, a tarball will be created named with the next
available positive number. That tarball will be uploaded to CPAN and will therefore be 
available for CPANtesters, CPAN-River-3000 and exploration on individual and 
enterprise codebases. The branch will be tagged at that point but will not be merged to 
blead.
Whatever is the next feature that achieves that maturity and pumpking approval will get a
tarball and tag with the next available positive number. I suspect that over a 12-month 
period we might get 5 or 6 of these development releases.

• When we have achieved more consensus on questions like:
‣ Will there be a 5.34 release?
‣ Will Perl 5 be operable from within Perl 7? If so, how?
‣ Which specific features will be turned on by default in Perl 7?
‣ Do we have a Perl 7 stable enough to release?
… then we can make decisions on how these tracks will be merged back into a "master" 
branch. Each of these tracks will have been submitted to the world for experimental use 
and review. So we won't be flying in the dark. We will have a good idea of what we are 
promising to maintain for a 5- to 10-year period in major version 5. And we will have a 
good idea of what major version 7 will look like in its first year of existence.

This is Perl. When in doubt, use a hash.

4 

https://github.com/Perl/perl5/issues

	EPIGRAPH
	DESCRIPTION
	What Is a Non-Sequential Development Release of Perl?
	Our current, sequential development pattern
	What would it mean for a development pattern to be non-sequential?

	Why Should We Consider Non-Sequential Development Right Now?


