
Status of Perl 7: A Personal View
This is a slightly revised version of a report I prepared for the Perl Steering Council (PSC) in
early February 2021 about the status of the Perl 7 efforts which I have been involved in since the
Conference in the Cloud (CiC) in June 2020.

Herein I speak only for myself.

Which "Perl 7"?

When I refer to "Perl 7," I'm referring specifically to the project with the following
characteristics:

• A line of development in which the goal would be major version 7 of the perl
executable, developed according to the goals outlined during "Perl Core" discussions in
Summer 2020, as listed here. In particular, strictures and warning would be operative
"starting with line 0." This is to be distinguished from an alternative approach in which
they would become strictures and warnings would be come operative after a major
version declaration like use v7;. I'll call such an alternative approach "starting with line
1."

• The work done in Nicolas Rochelemagne's repository, which I'll refer to as perl-atoomic;
and

• The project management approach discussed on that repository's wiki and implemented
in a roadmap of 16 sequential GitHub Issues.

Our/My Work on Perl 7

The short version of what these Perl 7 efforts were and where they stand …

After two or three false starts, we forked from the Perl 5 core distribution at the v5.33.0 tag. The
main branch in perl-atoomic is the alpha branch. We created branches for each of the 16
sequential GitHub issues as we came to them and worked on only one objective/branch at a time.
We did not merge the branch for any objective into alpha until we got all tests passing ("running
green").

The first three objectives -- bumping the major version number; strict by default; warnings by
default -- were expected to be the most difficult. Objectives 1 and 2 were met and the branches
for them were merged into alpha. Objective 3 is not yet merged. We are about six test files away
from that objective. To see the output of make test at the head of the alpha-03-dev-warnings
branch, get this tarball.

I worked intensely on this project from late June through September and gave four online
presentations (Perlmonger groups in Toronto, Houston, Philadelphia and D.C.) about it. My work
consisted almost entirely of adapting the test suite to work with the incremented major version
number, strict-by-default and warnings-by-default. (The guts changes implementing those
objectives were largely atoomic's work.) But the last time I met (virtually) with the other
principal developers (Sawyer X, Todd Rinaldo, Nicolas Rochelemagne) was on Oct 07 2020.

1

https://github.com/Perl/perl5/wiki/Defaults-for-v7
http://thenceforward.net/perl/perl7/freebsd.threaded.5dc2ff86e5.alpha-dev-03-warnings.make-test.output.txt.gz
https://github.com/atoomic/perl/labels/objective
https://github.com/atoomic/perl/wiki/Guidelines-for-Working-on-the-'alpha'-Branch
https://github.com/atoomic/perl/

Since September, the only other person authoring commits has been John Karr. In December I
created several pull requests for work on warnings-by-default. They went unreviewed for over a
month. On Jan 24 2021, I went ahead and merged them into the alpha-dev-03-warnings
branch. The tarball cited above reflects those merges.

Work on this version of Perl 7 can charitably described as "stalled." Although we're only six test
files away from Objective 3, that work is non-trivial, as it involves adapting both B::Deparse
and the debugger to run with warnings-by-default.

Should We Proceed?

So, the question arises: Should we proceed further on this line of development?

My reluctant answer is: No.

Lack of support from major Perl contributors

Except for a few situations where we cherry-picked commits from Perl 5 blead, no existing
committers or significant authors have come on board with the project since the end of June.
 $ git log --reverse b420444857986d91c39ac3187af1d7f6011611e6..HEAD | grep
'^Author:' | sort | uniq -c
 1 Author: Christian Walde <walde.christian@gmail.com>
 1 Author: David Mitchell <davem@iabyn.com>
 636 Author: James E Keenan <jkeenan@cpan.org>
 27 Author: John Karr <brainbuz@brainbuz.org>
 2 Author: Karl Williamson <khw@cpan.org>
 7 Author: Nicolas R <atoomic@cpan.org>
 83 Author: Nicolas R <nicolas@atoomic.org>
 9 Author: Todd Rinaldo <toddr@cpan.org>
 1 Author: Veesh Goldman <rabbiveesh@gmail.com>
 13 Author: oodler <oodler@cpan.org>
 2 Author: icolas <nicolas@atoomic.org>☢ ℕ ℝ
 $ git log --reverse b420444857986d91c39ac3187af1d7f6011611e6..HEAD | grep
'^Author:' | wc -l
 782

None of the people who were not committed to this vision of Perl 7 by early July and who
participated in the "Perl Steering Committee" Zoom meetings in July and August have come on
board. Since October, virtually no one has asked me, "Say, Jim, how's Perl 7 doing?" To put it
simply, notwithstanding an estimated 1000 person-hours of work, this vision of Perl's future has
not caught fire.

On the other hand, we should note that none of the most prominent critics of this vision of Perl 7
have put in any significant time or effort at implementing a different version of Perl's future. In
particular, AFAIK none of the people who proposed "defaults from line 1" have written any code
to demonstrate the feasibility or advantages of that approach. So our partially implemented
vision of Perl 7 is the only one on the table so far.

I should note that one aspect of our Perl 7 work has become reflected in ongoing Perl 5
development. It is now generally accepted that all dual-life code in the core distribution (dist/
and cpan/) should be strict- and warnings-compliant. Todd and Nico have had good results

2

persuading authors of CPAN-upstream authors to accept patches to achieve this compliance; that
work has then been synched into blead. The work we've done in Perl 7 (modulo one failing test
for Storable) shows that all of the .pm and .pl files that ship with core can achieve both strict-
and warnings-compliance.

Perl as Unix utility versus Perl as Application Development Language

I'm going to set aside the large number of "We weren't consulted before this was announced"
responses to Sawyer's CiC proposal. I can understand the feelings behind these responses, but
here I want to focus on the technical.

The strongest criticism of the approach to Perl 7 embodied in Sawyer's CiC presentation and in
our subsequent work in perl-atoomic was that changing Perl's default behavior would completely
disrupt the command-line use of the perl executable to run "darkpan" programs written since
1994.

On the one hand, many people who consciously think of themselves as being "in the Perl
community" and a (dwindling) number of organizations (for-profit, not-for-profit, government)
build complex web applications in Perl.

On the other hand, an unknown but non-trivial number of people use the perl executable in
pipelines essentially as a more powerful shell. A program written in Perl which, say, is part of
Debian's apt suite is expected to behave in exactly the same way for decades. That implies
highly consistent default behavior. The same thing is true in OpenBSD, where perl is core in
much the same way as ls or cat is. In OpenBSD perl is not maintained as a package in the
lang category as is, say, Python.

Perl 5's greatest strength since 1994 has been that it is both a language in which to write complex
applications and a language to use on the command-line. The greatest limitation to Perl 5's long-
term viability since 1994 has been that it is both a language in which to write complex
applications and a language to use on the command-line. Perl's greatest strength and greatest
limitation are exactly the same.

An anecdote to illustrate the foregoing

<anecdote>

I came face to face with this second use of perl in a surprising way during the past seven months.
I was preparing to teach an online course in Modern Money Theory for the Henry George School
of Social Science in New York City in November and December. I co-taught a similar course in
fall 2019, during which I had to accommodate my teaching partner's preference for using Google
Slides. In 2020 I was teaching solo, so I used the same program I've used since 2004: MJD's
text2slide program -- a program which he himself adapted from one written by Sean Burke in
the 1990s. Unglamorous, but it got the job done.

text2slide takes a single plain-text file, images in a subdirectory, and generates a series of
linked HTML pages from those inputs. When I run the slides, I'm clicking from one HTML page

3

https://openports.se/lang

to another; I'm not clicking through pages in a PDF. I've never had any complaints about that at
Perl conferences, and no one to whom I've ever sent a tarball of the slides has ever been unable
to click through the HTML either.

However, for this course I anticipated that my students (or, at least, the small fraction who would
be motivated enough to want to go through the slides on their own) would be more comfortable
downloading a single, multi-page PDF and clicking it through that. To make a long story short: I
found the solution in another MJD program so obscure that it's not on CPAN, nor is it on MJD's
plover.com. I downloaded it, peeked at the code, shuttered at the late-1990s non-strictness -- but
it worked. The PDF slides were not attractive, but they sufficed.

</anecdote>

To summarize: I don't think that the benefits of bumping perl to a new major version in which
strictures and warnings are on by default outweigh the likely costs.

Is there a path forward?

Yes, possibly.

perl should have children

The next generation for Perl should be child languages rather than a new major version of the
perl executable which changes its default behavior in a way many in the information technology
world will find objectionable.

Such child languages will have names different from their parent's. These child languages will
focus on Perl's use in building complex applications and be willing to sacrifice some of perl's
role in Unix pipelines. Nor will such child languages be required or expected to support 35,000+
CPAN libraries "out of the box."

The line of approach suggested by Sawyer at the 2020 CiC could, of course, be one of these
children. So could a line of approach which does not attempt to achieve strict- and warnings-by-
default but which does seek to implement the other dozen objectives which we haven't gotten to
in Perl 7. So could a line of approach whose focus is "great subroutine signatures or else!"

Which children will survive?

Whether these children survive pregnancy, birth and infancy will depend on whether they have
organizational support behind them. Whether or not an organization is willing to write a new
application (or extend an existing one) in a particular Perl child and put that application into
production is the acid test. If an organization is willing to put such an application into
production, it has to pay people to maintain that application. A language in which people are
hired to work has a chance at adolescence and adulthood. A language in which no one is being
paid to work will die in infancy.

Suppose, for example, that Booking, cPanel and Fastmail all wanted to continue to develop web
applications in Perl (broadly speaking) but all wanted really good subroutine signatures --

4

something that necessarily comes at the expense of pre-5.22 prototypes. If they collaborated,
could they could produce such a language? Yes, undoubtedly, and probably in less than twelve
months.

Those children of Perl that survive will be those that meet real organizational production needs
and which ignore all the whining on https://www.reddit.com/r/perl/ and #p5p.

James E Keenan
March 25 2021

5

https://metacpan.org/pod/#p5p
https://www.reddit.com/r/perl/

	Status of Perl 7: A Personal View
	Which "Perl 7"?
	Our/My Work on Perl 7
	Should We Proceed?
	Lack of support from major Perl contributors
	Perl as Unix utility versus Perl as Application Development Language
	An anecdote to illustrate the foregoing

	Is there a path forward?
	perl should have children
	Which children will survive?

