
A Primer on
Coverage Analysis

with
Devel::Cover

James E Keenan
(jkeenan@cpan.org)

Perl Seminar New York
Tuesday, December 21, 2004

2

CPAN Modules
 (1) and Tests (1)

• Every Perl module on CPAN comes with
tests

• Sometimes just a single file

• My-Module/test.t

3

CPAN Modules
(2) and Tests (2)

• More often, a suite of files in their own
directory:

• My-module/t/01.t
• My-module/t/02.t
• My-module/t/03.t

4

So how good are they?

• Good tests would show you where your
bugs are.

• If you did revisions to your code,
good tests would show you where
your revisions broke your code.

• But your tests will never confirm the
absence of bugs. Only their presence.

5

Alternative?
Supplement?

• So you need an alternative ... or, more likely,
a supplement.

• Coverage analysis provides that.

• "Code coverage tools measure how
thoroughly tests exercise programs."
-- Brian Marick, "How to Misuse Code
Coverage," 1997: www.testing.com

6

Time::Local

• Objective: "efficiently compute time from
local and GMT time."

• It exports only two functions:

• timelocal()

• timegm()

• Inverse of Perl built-in functions
localtime() and gmtime()

7

A ‘core’ module

• Must be good: it’s ‘core’

• Automatically distributed with Perl itself

• Its latest version (1.10) passes all its tests.

8

9

How good are
the tests?

• Just because Time::Local passes all its tests
doesn’t mean the tests are good tests.

• All we can say is: The current tests do not
report any bugs.

• How thoroughly do the tests exercise the
code?

10

How much coverage?

• A fair amount of Time::Local’s code is not
called by its test file ... so it’s not tested.

• But first, some more on coverage analysis.

11

Statement Coverage

• Breaks source code down into individual
statements.

• As test suite operates, it records number of
times each statement was called.

• Reports which statements were not called
in course of test suite

• -- and, hence, were not tested.

12

Subroutine Coverage

• Perl modules are packages of subroutines.

• If test suite fails to call a particular
subroutine, then that subroutine is, by
definition, untested.

• Implication: Making sure each subroutine is
tested at least once is a good way to
improve coverage of module as a whole.

13

Branch Coverage

• As program get different inputs, it can take
different branches and produce different
outputs

• Perl branch points

• if ... elsif ... else

• unless ... else

• ? :

14

Condition Coverage

• Examines situations where truth or
falsehood of logical statements are tested.

• Perl conditions:

• &&

• ||

• Both branch and condition coverage ask:
Did you test all possibilities?

15

Applying Devel::Cover (1)

Easiest approach: Command-line utility: cover

$ cd Time-Local-1.10

$ perl Makefile.PL

$ make

16

Applying Devel::Cover (2)

Delete database created by any previous use of
Devel::Cover in this directory

$ cover -delete

Set special switches and run test suite
$ HARNESS_PERL_SWITCHES=-MDevel::
Cover make test

17

Applying Devel::Cover (3)

Creates the coverage database and default
HTML versions of coverage reports:

$ cover

18

Applying Devel::Cover (4)

Other cover options:

$ cover cover_db -report=text

$ cover cover_db -report=text >
My.Module.0.00.coverage.txt

$ cover cover_db -coverage=subroutine

$ cover cover_db -coverage=subroutine
-report=html

19

Making use of
(1) coverage analysis (1)

• Print everything out and study it:

• Code

• Tests

• Documentation

• This is “glass-box” testing

20

Making use of
(2) coverage analysis (2)

• Write tests for uncovered subroutines.

• Write tests for uncovered branches and
conditions.

• Can usually get 90% statement coverage,
often 95% or higher

• 100% statement coverage is usually difficult

A Primer on
Coverage Analysis

with
Devel::Cover

James E Keenan
(jkeenan@cpan.org)

Perl Seminar New York
Tuesday, December 21, 2004

