A Primer on
Coverage Analysis
with
Devel::Cover

James E Keenan
(jkeenan@cpan.org)
Perl Seminar New York

Tuesday, December 21, 2004

CPAN Modules
and lests

® Every Perl module on CPAN comes with
tests

® Sometimes just a single file

® My-Module/test.t

CPAN Modules
and lests (2)

® More often, a suite of files in their own
directory:

® My-module/t/0].t
® My-module/t/02.t
® My-module/t/03.t

So how good are they!

® Good tests would show you where your
bugs are.

® |f you did revisions to your code,
good tests would show you where
your revisions broke your code.

® But your tests will never confirm the
absence of bugs. Only their presence.

Alternative?
Supplement?

So you need an alternative ... or, more likely,
a supplement.

Coverage analysis provides that.

"Code coverage tools measure how
thoroughly tests exercise programs.”
-- Brian Marick, "How to Misuse Code
Coverage," 1997: www.testing.com

Time::Local

® Objective: "efficiently compute time from
local and GMT time."

® |t exports only two functions:
@ timelocal ()

® timegm{()

® |nverse of Perl built-in functions
localtime () and gmtime ()

A ‘core’ module

® Must be good: it’s ‘core’
® Automatically distributed with Perl itself

® [ts latest version (1.10) passes all its tests.

SO86 CPAN Testers: Reports for Time-Local

&

I l A A | | c | | + | € http: //testers.cpan.org/show/Time-Local.html#Time-La = Q- Google

CPAN Testers: Reports for Time-Local

These are the test reports that we have for the CPAN distribution Time-Local.

1.10 (27 PASSes)
133804 PASS ppc-darwin-thread-multi
133807 PASS i686-linux
133828 PASS darwin-thread-multi-2level
133832 PASS sun4-solaris-thread-multi
133844 PASS i686-linux
133845 PASS darwin-2level
133861 PASS sun4d-solaris
133868 PASS i386-freebsd
133873 PASS i586-linux
133900 PASS sun4-solaris-thread-multi
134243 PASS MSWin32-xB6-multi-thread
134336 PASS i686-linux
134568 PASS darwin-thread-multi-2level
134739 PASS i686-linux
134980 PASS sun4d-solaris-thread-multi-64int
134984 PASS sun4-solaris-thread-multi-64int-ld
135538 PASS sun4-solaris
136118 PASS sun4-solaris-64
137219 PASS ppc-linux-thread-multi
140478 PASS i386-netbsd
142003 PASS darwin-thread-multi-2level
142939 PASS MSWin32-xB6-multi-thread
144183 PASS i386-freebsd-64int
148424 PASS i586-linux-thread-multi
149466 PASS darwin
150224 PASS i686-linux
159973 PASS sun4-solaris-thread-multi

How good are
the tests!

® |ust because Time::Local passes all its tests
doesn’t mean the tests are good tests.

® All we can say is: The current tests do not
report any bugs.

® How thoroughly do the tests exercise the
code!

How much coverage!

® A fair amount of Time::Locals code is not
called by its test file ... so it’s not tested.

® But first, some more on coverage analysis.

Statement Coverage

® Breaks source code down into individual
statements.

® As test suite operates, it records number of
times each statement was called.

® Reports which statements were not called
in course of test suite

® --and, hence, were not tested.

Subroutine Coverage

® Perl modules are packages of subroutines.

® [f test suite fails to call a particular
subroutine, then that subroutine is, by
definition, untested.

® |mplication: Making sure each subroutine is
tested at least once is a good way to
improve coverage of module as a whole.

Branch Coverage

® As program get different inputs, it can take
different branches and produce different
outputs

® Perl| branch points
e 1f ... elsif ... else

® Unless ... else

o

Condition Coverage

® Examines situations where truth or
falsehood of logical statements are tested.

® Per| conditions:
® &&

® Both branch and condition coverage ask:
Did you test all possibilities?

Applying Devel::Cover

Easiest approach: Command-line utility: cover

S cd Time-Local-1.10
S perl Makefile.PL

S make

Applying Devel::Cover

Delete database created by any previous use of
Devel::Cover in this directory

S cover -—-delete

Set special switches and run test suite

S HARNESS PERL SWITCHES=-MDevel::
Cover make test

Applying Devel::Cover

Creates the coverage database and default

HTML versions of coverage reports:

S cover
FE} O O | cover_db '-i::'q|
[« » [S || 4~ Q-
Back Wiew Action Search
Mame &1 Date Modified Size Kind
» blib-lib-Time-Local-pm--branch.html Yesterday, 12:30 PM 8 KB HTML document
« blib-lib-Time-Local-pm--condition.html Yesterday, 12:30 PM 12 KB HTML document
« Bblib-lib-Time-Local-pm--subroutine.html Yesterday, 12:30 PM 4 KB HTML document
« blib-lib-Time-Local-pm.html Yesterday, 12:30 PM 36 KB HTML document
- | cover.12 Nov &, 2004, B:46 PM & KB Document
COVer.css Yesterday, 12:30 PM & KB C55 style sheet
* coverage.htmi Yesterday, 12:30 PM 4 KB HTML document
[2 FUNS Nov &, 2004, B:46 PM - Folder
[2 structure Nov &, 2004, B:46 PM - Folder
€ »
- 9 items, 38.6 GB available ﬁ;

|7

Applying Devel::Cover

Other cover options:
S cover cover db -report=text

S cover cover db -report=text >
My .Module.0.00.coverage.txt

S cover cover db -coverage=subroutine

S cover cover db -coverage=subroutine
—report=html

Making use of
coverage analysis ()

® Print everything out and study it:
® Code
® Jests
® Documentation

® This is “glass-box’ testing

Making use of
coverage analysis ¢

® \Write tests for uncovered subroutines.

® \Write tests for uncovered branches and
conditions.

® Can usually get 90% statement coverage,
often 95% or higher

® |00% statement coverage is usually difficult

20

A Primer on
Coverage Analysis
with
Devel::Cover

James E Keenan
(jkeenan@cpan.org)
Perl Seminar New York

Tuesday, December 21, 2004

