
A TASTE OF TAXONOMIES

The Problem

Let's start with a problem: You are presented with a CSV file that looks
like this:

 $> cat automobiles_taxonomy.csv

 path,audience_size,cpm,buyable
 "|General Motors","","",0
 "|General Motors|Chevrolet",1000000,0.80,1
 "|General Motors|Chevrolet|Spark",100000,0.15,1
 "|General Motors|Chevrolet|Sonic",150000,0.20,1
 "|General Motors|Chevrolet|Cruze",250000,0.20,1
 "|General Motors|Chevrolet|Malibu",200000,0.25,1
 "|General Motors|Chevrolet|Impala",175000,0.30,1
 "|General Motors|Cadillac",150000,1.00,1
 "|General Motors|Cadillac|Coupe",150000,0.30,1
 "|General Motors|Cadillac|Sedan",150000,0.35,1
 "|General Motors|Cadillac|Crossover",150000,0.40,1
 "|General Motors|Cadillac|Escalade",150000,0.50,1
 "|Toyota","","",0
 "|Toyota|Corolla",800000,0.60,1
 "|Toyota|Camry",600000,0.70,1
 "|Toyota|Prius",400000,0.80,1
 "|Toyota|RAV4",300000,0.50,1

You are told that the first column in this CSV file -- "path" -- holds
hierarchical data about automobile manufacturers, their major car lines or
"marques" and individual models.

 "|manufacturer|marque|model"

You are instructed to process this CSV data and insert it into a relational
database table named "autos" -- but you are told that in that table each row
will be uniquely identified by an "id" column and that the hierarchical
nature of the data has to be described by a combination of three columns,
like this:

A Taste of Taxonomies New York Perlmongers
!

! 2!

 id | parent_id | name | audience_size | cpm | is_actionable
 ----+-----------+----------------+---------------+------+---------------
 1 | | General Motors | | | f
 2 | | Toyota | | | f
 3 | 1 | Chevrolet | 1000000 | 0.80 | t
 4 | 1 | Cadillac | 150000 | 1.00 | t
 5 | 2 | Corolla | 800000 | 0.60 | t
 6 | 2 | Camry | 600000 | 0.70 | t
 7 | 2 | Prius | 400000 | 0.80 | t
 8 | 2 | RAV4 | 300000 | 0.50 | t
 9 | 3 | Spark | 100000 | 0.15 | t
 10 | 3 | Sonic | 150000 | 0.20 | t
 11 | 3 | Cruze | 250000 | 0.20 | t
 12 | 3 | Malibu | 200000 | 0.25 | t
 13 | 3 | Impala | 175000 | 0.30 | t
 14 | 4 | Coupe | 150000 | 0.30 | t
 15 | 4 | Sedan | 150000 | 0.35 | t
 16 | 4 | Crossover | 150000 | 0.40 | t
 17 | 4 | Escalade | 150000 | 0.50 | t

The "name" column, you are told, is the last part of the pipe-delimited
string you see in the "path" column of the incoming CSV file. The
"parent_id" column, you are also told, is the "id" number of the row in the
database holding a "name" corresponding to the next-to-last part of the
pipe-delimited string you see in the "path" column. So, given this row in
the CSV file:

 "|General Motors|Chevrolet|Spark",100000,0.15,1

Once this record is assigned "id 9" in the "autos" table and "name Spark",
you ask, "What is the "id" for "Chevrolet" in the "autos" table?", and you
assign that value -- 3 to the "parent_id" column of the row whose "id" is 6.

 9 | 3 | Spark | 100000 | 0.15 | t

"Chevrolet"'s "parent_id", in turn, becomes 1 because the "id" assigned to
"General Motors" -- Chevrolet's "parent" -- is 1.

The problem is: Can you actually get from here to there? Is the data in the
CSV file truly hierarchical and, if it is and you get it into the database
table, can you confirm that you preserved its hierarchical nature in the new
format?

A Taste of Taxonomies New York Perlmongers
!

! 3!

To answer these questions, we first have to learn something about the data
structure known as a taxonomy.

What Is a Taxonomy?

In today's presentation I hope to:

* Give you an introduction to taxonomies;

* Show you how taxonomies can be represented in plain-text CSV files; and

* Present some interesting use cases, including transforming one kind of
taxonomy into another.

In this presentation I will define a taxonomy as a tree-like data structure
(such as that shown in Diagram 1) with a root node, zero or more branch
(child) nodes, and one or more leaf nodes.

Diagram 1:

 Root
 |
 --
 | | | |
 Branch Branch Branch Leaf
 | | |
 ------------------------- ------------ |
 | | | | |
 Branch Branch Leaf Leaf Branch
 | | | |
|---|---|---|
 | | | |
 Leaf Leaf Leaf Leaf

The root node and each branch node must have at least one child node, but
leaf nodes have no child nodes. The number of branches between a leaf node
and the root node is variable.

Let's make this structure a bit more human-friendly by giving names to the

A Taste of Taxonomies New York Perlmongers
!

! 4!

various nodes.

Diagram 2:

 ""
 |
 --
 | | | |
 Alpha Beta Gamma Delta
 | | |
 ------------------------- ------------ |
 | | | | |
 Epsilon Zeta Eta Theta Iota
 | | | |
|---|---|---|
 | | | |
 Kappa Lambda Mu Nu

We can leave the root node unnamed for now. (You can think of that as
"Mother Nature", "the Divinity" or "the Unnameable.")

Looking at Diagram 2, you might well ask, "Do the nodes in the taxonomy
have to have unique names?" The answer is: No, they don't -- with one
exception. No two nodes which are children of the same parent can have the
same name -- but it is okay for nodes which are children of different parents to
be named the same. So Diagram 3 shows a legitimate taxonomy because the
two nodes named "Delta" have different parents.

Diagram 3: (valid)

 ""
 |
 --
 | | | |
 Alpha Beta Gamma Delta
 | | |
 ------------------------- ------------ |
 | | | | |
 Epsilon Zeta Eta Theta Iota
 | | | |
|---|---|---|
 | | | |
 Kappa Lambda Mu Delta

A Taste of Taxonomies New York Perlmongers
!

! 5!

But Diagram 4 is not a legitimate taxonomy because two children of the root
node both are named "Delta."

Diagram 4: (invalid)

 ""
 |
 --
 | | | |
 Alpha Beta Delta Delta <-- invalid
 | | |
 ------------------------- ------------ |
 | | | | |
 Epsilon Zeta Eta Theta Iota
 | | | |
|---|---|---|
 | | | |
 Kappa Lambda Mu Nu

A taxonomy may or may not represent some intrisic hierarchical structure
within a data set. What's more important is that a taxonomy be useful in
organizing human thinking about a data set. The most famous taxonomies are
the those associated with Linnaeus and his description of the Plant and
Animal Kingdoms.
(<https://en.wikipedia.org/wiki/File:Carl_von_Linn%C3%A9.jpg>) Today
they may not be considered the most scientifically accurate depictions of
nature, but they certainly have been useful over the centuries in helping
humans think about nature.

There are, however, other useful ways to structure our thinking about data
sets. The taxonomy is good at showing hierarchical relationships among nodes
in a data set, but it's not very good at showing the properties or
attributes of individual nodes. For that we're more likely to turn to a
two-dimensional matrix-like structure in which each row represents the
properties of an individual node, while each column holds the value of a
particular property across all nodes. We see this in spreadsheets, in
relational database tables and, should we choose to work in the plain-text
world, in CSV files.

A Taste of Taxonomies New York Perlmongers
!

! 6!

Can We Represent Hierarchically Structured Data in Row-Column
Format?

Materialized Path
Suppose we have a set of demographic data with thse four properties:

 nationality,gender,age,income

With only these four columns, the data is not very useful. We don't have a
way to uniquely identify a given record or look up its properties. But if
the data set meets the requirements for a taxonomy we are on the road to
success -- and, as we shall see, there are at least two such roads to
success.

Let's go back to Diagram 3: the taxonomy where one node shared the same
name with a node with a different parent:

Diagram 3: (redux)

 ""
 |
 --
 | | | |
 Alpha Beta Gamma Delta
 | | |
 ------------------------- ------------ |
 | | | | |
 Epsilon Zeta Eta Theta Iota
 | | | |
|---|---|---|
 | | | |
 Kappa Lambda Mu Delta

Let's assume that each node in this tree has a value for the four
demographic properties mentioned above. Our first pass at representing this
tree in CSV format might look like this:

A Taste of Taxonomies New York Perlmongers
!

! 7!

Diagram 5:

 "name","nationality","gender","age","income"
 "Alpha","","","",""
 "Epsilon","","","",""
 "Kappa","","","",""
 "Zeta","","","",""
 "Lambda","","","",""
 "Mu","","","",""
 "Beta","","","",""
 "Eta","","","",""
 "Theta","","","",""
 "Gamma","","","",""
 "Iota","","","",""
 "Delta","","","",""
 "Delta","","","",""

We simply create a column called "name" and populate it with the name of the
node in the tree. But this is obviously insufficient: All sense of the
hierarchical structure is lost; and two nodes share the same name,
precluding the "name" column from being used to uniquely identify each
record.

But, what if instead of a "name" column we created a "path" column which we
populated, not just with the node's name, but with the names of each of the
node's ancestors? In other words, suppose the "path" column held the
complete route from the root node to any given node. We could do this if we
separated each of the ancestor nodes with a delimiter different from that
used in the CSV data itself. For example, if we used a pipe ("|") delimiter
inside the "path" column, our data would look like this:

A Taste of Taxonomies New York Perlmongers
!

! 8!

Diagram 6: Taxonomy by Materialized Path

 "path","nationality","gender","age","income"
 "|Alpha","","","",""
 "|Alpha|Epsilon","","","",""
 "|Alpha|Epsilon|Kappa","","","",""
 "|Alpha|Zeta","","","",""
 "|Alpha|Zeta|Lambda","","","",""
 "|Alpha|Zeta|Mu","","","",""
 "|Beta","","","",""
 "|Beta|Eta","","","",""
 "|Beta|Theta","","","",""
 "|Gamma","","","",""
 "|Gamma|Iota","","","",""
 "|Gamma|Iota|Delta","","","",""
 "|Delta","","","",""

The "path" column is now an instance of what is often referred to as a
materialized path, so I will refer to this type of CSV data as a taxonomy by
materialized path.

Note that every node in the hierarchy (except the root node, which can often
be treated as optional) has its own CSV record. Note further that the
materialized path uniquely identifies each record and describes each
record's position in the taxonomy.

Adjacent List

There are, however, other ways to represent a taxonomy in CSV format
besides materialized path. Suppose we were to start from our last diagram and
issue each record a serial number -- a unique, numerical ID issued in
sequence.

A Taste of Taxonomies New York Perlmongers
!

! 9!

Diagram 7:

 id,"path","nationality","gender","age","income"
 1,"|Alpha","","","",""
 2,"|Alpha|Epsilon","","","",""
 3,"|Alpha|Epsilon|Kappa","","","",""
 4,"|Alpha|Zeta","","","",""
 5,"|Alpha|Zeta|Lambda","","","",""
 6,"|Alpha|Zeta|Mu","","","",""
 7,"|Beta","","","",""
 8,"|Beta|Eta","","","",""
 9,"|Beta|Theta","","","",""
 10,"|Gamma","","","",""
 11,"|Gamma|Iota","","","",""
 12,"|Gamma|Iota|Delta","","","",""
 13,"|Delta","","","",""

Note that we now have two columns in this CSV file each of which uniquely
identifies each record.

Next, suppose that we provide each record with a "parent_id" value, *i.e.,*
the value of the "id" field for the record's parent node in the hierarchy.
Our taxonomy would then look like this:

A Taste of Taxonomies New York Perlmongers
!

! 10!

Diagram 8:

 id,parent_id,"path","nationality","gender","age","income"
 1,,"|Alpha","","","",""
 2,1,"|Alpha|Epsilon","","","",""
 3,2,"|Alpha|Epsilon|Kappa","","","",""
 4,1,"|Alpha|Zeta","","","",""
 5,4,"|Alpha|Zeta|Lambda","","","",""
 6,4,"|Alpha|Zeta|Mu","","","",""
 7,,"|Beta","","","",""
 8,7,"|Beta|Eta","","","",""
 9,7,"|Beta|Theta","","","",""
 10,,"|Gamma","","","",""
 11,10,"|Gamma|Iota","","","",""
 12,11,"|Gamma|Iota|Delta","","","",""
 13,,"|Delta","","","",""

Records 1, 7, 10 and 13 have a null value for "parent_id" because their
parent is the root node (which we continue to ignore for the time being).
Records 2 and 4 have a "parent_id" value of 1 because "Epsilon" and "Zeta"
are the children of "Alpha" and so forth.

But there's one more refinement we need to make. We no longer need all the
data in the "path" column. We can look up each node's parent by checking the
value of its "parent_id" column; look up that node's parent by checking the
value of its "parent_id" column; and so on until we get to the top-level
node. We can revert to having a "name" column which holds only the name of
an individual node. Our CSV data now looks like this:

A Taste of Taxonomies New York Perlmongers
!

! 11!

Diagram 9:

 id,parent_id,"name","nationality","gender","age","income"
 1,,"Alpha","","","",""
 2,1,"Epsilon","","","",""
 3,2,"Kappa","","","",""
 4,1,"Zeta","","","",""
 5,4,"Lambda","","","",""
 6,4,"Mu","","","",""
 7,,"Beta","","","",""
 8,7,"Eta","","","",""
 9,7,"Theta","","","",""
 10,,"Gamma","","","",""
 11,10,"Iota","","","",""
 12,11,"Delta","","","",""
 13,,"Delta","","","",""

We no longer have to worry about records at different levels of the
hierarchy sharing the same name because the uniqueness of each record is
guaranteed by the "id" column -- not by the "name" column or by a "path"
column. And we no longer need the "path" column to hold a delimited string
representation of the route from the node back to the root node; we can
follow the chain of "id"s and "parent_id"s to achieve the same end.

A fancier way of asking "Where is this node in the hierarchy?" is to ask
"What node is this node adjacent to?" The term adjacent list is often used
to describe this kind of data structure. So we'll describe this kind of
taxonomy where you use "id"s and "parent_id"s to uniquely identify a node
and to describe its location in the tree as a taxonomy by adjacent list.
Note that the same underlying data structure could be represented by either
a taxonomy-by-materialized-path or a taxonomy-by-adjacent-list and that we
have, in effect, transformed the former into the latter.

A Taste of Taxonomies New York Perlmongers
!

! 12!

Why Should We Care about Taxonomies?

At this point in this presentation, you are probably asking yourself two
questions:

1 What's the practical use of this stuff?

2 Where's the Perl?

Let's look at some use-cases first. I'll construct these use cases from the
digital marketing industry (because that's where I'm currently employed and
hence where I can think of examples most quickly), but I'm sure you'll be
able to think of other cases as well.

Digital marketing is basically worthless unless it's targeted to particular
potential customers. A sub-industry of audience vendors has arisen whose
members purport to be able to deliver particular groups of potential
customers to advertisers willing to pay a fee for that service. Advertising
technology companies need to be able to get data from audience vendors,
store it internally and enable their customers -- advertising agencies and
advertising brands -- to use that data in making decisions about purchasing
digital advertising placements.

Let's suppose that a particular audience vendor specializes in automobiles
and can provide audiences based on manufacturer, brand and model. Let's
suppose further that that vendor supplies its data to ad tech companies in a
CSV file said to hold a taxonomy by materialized path. That file might look
like this:

A Taste of Taxonomies New York Perlmongers
!

! 13!

Diagram 10:

 $> cat automobiles_taxonomy.csv

 path,audience_size,cpm,buyable
 "|General Motors","","",0
 "|General Motors|Chevrolet",1000000,0.80,1
 "|General Motors|Chevrolet|Spark",100000,0.15,1
 "|General Motors|Chevrolet|Sonic",150000,0.20,1
 "|General Motors|Chevrolet|Cruze",250000,0.20,1
 "|General Motors|Chevrolet|Malibu",200000,0.25,1
 "|General Motors|Chevrolet|Impala",175000,0.30,1
 "|General Motors|Cadillac",150000,1.00,1
 "|General Motors|Cadillac|Coupe",150000,0.30,1
 "|General Motors|Cadillac|Sedan",150000,0.35,1
 "|General Motors|Cadillac|Crossover",150000,0.40,1
 "|General Motors|Cadillac|Escalade",150000,0.50,1
 "|Toyota","","",0
 "|Toyota|Corolla",800000,0.60,1
 "|Toyota|Camry",600000,0.70,1
 "|Toyota|Prius",400000,0.80,1
 "|Toyota|RAV4",300000,0.50,1

Problem: Is the taxonomy valid?

Let's say that you're a product manager or an engineer in an ad tech company
and an audience vendor has provided you with the CSV data above. Before
you go inserting this data into your database and permitting your customers to
make purchasing decisions based on this data, you should ask: "Is this a
valid taxonomy? Can I rule out obvious defects in the data?"

Two potential defects come to mind.

1. Missing branch node

 Suppose the GM data in the taxonomy above jumped directly from the
 "|General Motors" node to the "|General Motors|Chevrolet|Spark" node
 without the intermediate branch node "|General Motors|Chevrolet".

 "|General Motors","","",0
 "|General Motors|Chevrolet|Spark",100000,0.15,1

A Taste of Taxonomies New York Perlmongers
!

! 14!

 This would violate the rule that every node in the hierarchy be
 represented by a unique record in the taxonomy. Hence, the taxonomy
 would be invalid.

2. Two nodes, children of same parent, with same name

 Suppose in the "Chevrolet" data there were two nodes with the same brand
 name.

 "|General Motors|Chevrolet|Sonic",100000,0.15,1
 "|General Motors|Chevrolet|Sonic",150000,0.20,1

 Two children of the same parent node are sharing the same name. This
 would invalidate the taxonomy because the materialized path would no
 longer be able to uniquely identify each record.

Solution: Parse::Taxonomy

I have written a Perl library called Parse-Taxonomy
<http://search.cpan.org/dist/Parse-Taxonomy/> which you can find on CPAN
which provides basic functionality for handling taxonomies with data in CSV
format. The library contains two principal subclasses --
Parse::Taxonomy::MaterializedPath and Parse::Taxonomy::AdjacentList – to
handle the two kinds of taxonomies discussed in today's presentation. The
library also contains a cookbook with recipes for common problems in dealing
with taxonomies. Consulting that cookbook, we find that we can validate a
taxonomy-by-materialized-path by simply trying to create a
Parse::Taxonomy::MaterializedPath object.

 $obj = Parse::Taxonomy::MaterializedPath->new({
 file => 'automobiles_taxonomy.csv',
 });
 ok(defined $obj, "$taxonomy_file passes basic validations");

Once we have a valid taxonomy, we can play with it by calling methods on
the object. For example, we can turn it into a hash:

 my $hashified = $obj->hashify();

A Taste of Taxonomies New York Perlmongers
!

! 15!

 {
 "|General Motors" => {
 audience_size => "",
 buyable => 0,
 cpm => "",
 path => "|General Motors"
 },
 "|General Motors|Cadillac" => {
 audience_size => 150000,
 buyable => 1,
 cpm => "1.00",
 path => "|General Motors|Cadillac",
 },
 # ...
 "|Toyota" => {
 audience_size => "",
 buyable => 0,
 cpm => "",
 path => "|Toyota"
 },
 "|Toyota|Camry" => {
 audience_size => 600000,
 buyablB => 1,
 cpm => "0.70",
 path => "|Toyota|Camry",
 },
 # ...
 }

We can also take the data in the object and structure them as a
taxonomy-by-adjacent-list, which we then write out to a CSV file.

 my $adjacentified = $obj->adjacentify();

 my $csv_out = "$cwd/examples/data/auto_adjacent.csv";

 $obj->write_adjacentified_to_csv({
 adjacentified => $adjacentified,
 csvfile => $csv_out,
 });

A Taste of Taxonomies New York Perlmongers
!

! 16!

 $> cat examples/data/auto_adjacent.csv

 id,parent_id,name,audience_size,cpm,buyable
 1,,"General Motors",,,0
 2,,Toyota,,,0
 3,1,Chevrolet,1000000,0.80,1
 4,1,Cadillac,150000,1.00,1
 5,2,Corolla,800000,0.60,1
 6,2,Camry,600000,0.70,1
 7,2,Prius,400000,0.80,1
 8,2,RAV4,300000,0.50,1
 9,3,Spark,100000,0.15,1
 10,3,Sonic,150000,0.20,1
 11,3,Cruze,250000,0.20,1
 12,3,Malibu,200000,0.25,1
 13,3,Impala,175000,0.30,1
 14,4,Coupe,150000,0.30,1
 15,4,Sedan,150000,0.35,1
 16,4,Crossover,150000,0.40,1
 17,4,Escalade,150000,0.50,1

We could next take this CSV file and use it as input for another module
within the Parse-Taxonomy distribution, Parse::Taxonomy::AdjacentList. As
was the case with Parse::Taxonomy::MaterializedPath, if we can successfully
create a Parse::Taxonomy::AdjacentList object with a given input, we have
confirmed that the data has a taxonomically valid structure.

 my $alobj = Parse::Taxonomy::AdjacentList->new({
 file => $csv_out,
 });
 ok(defined($alobj), "Taxonomically valid adjacent list");

We can even turn this taxonomy-by-adjacent-list back into a
taxonomy-by-materialized-path by calling a "pathify()" method on this
object.

 my $pathified = $alobj->pathify();

And, with a little work not shown here, we can write tests that demonstrate
that the data structure in the Parse::Taxonomy::AdjacentList object is
exactly the same as the data structure we first created in the
Parse::Taxonomy::MaterializedPath object.

A Taste of Taxonomies New York Perlmongers
!

! 17!

Summary

In today's presentation we've:

* Met the tree-like data structure known as a taxonomy;

* Seen how taxonomies can be represented in a two-dimensional, row-
column matrix format such as a CSV file; and

* Examined how CPAN library Parse-Taxonomy can be used to validate a
data structure as a taxonomy and to transform one common form of taxonomy
into another.

There are a variety of other CPAN libraries which deal with hierarchically
structured data, particularly in the DBIx::Class namespace. I encourage you
to check them all out.

Thank you very much.

